Download Now

Data Science: Practical Deep Learning in Theano + TensorFlow

Data Science: Practical Deep Learning in Theano + TensorFlow
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 1.5 Hours | 345 MB
Genre: eLearning | Language: English
Take deep learning to the next level with SGD, Nesterov momentum, RMSprop, Theano, TensorFlow, and using the GPU on AWS.

This course continues where my first course, Deep Learning in Python, left off. You already know how to build an artificial neural network in Python, and you have a plug-and-play script that you can use for TensorFlow.

You learned about backpropagation (and because of that, this course contains basically NO MATH), but there were a lot of unanswered questions. How can you modify it to improve training speed? In this course you will learn about batch and stochastic gradient descent, two commonly used techniques that allow you to train on just a small sample of the data at each iteration, greatly speeding up training time.

You will also learn about momentum, which can be helpful for carrying you through local minima and prevent you from having to be too conservative with your learning rate. You will also learn about adaptive learning rate techniques like AdaGrad and RMSprop which can also help speed up your training.

In my last course, I just wanted to give you a little sneak peak at TensorFlow. In this course we are going to start from the basics so you understand exactly whats going on - what are TensorFlow variables and expressions and how can you use these building blocks to create a neural network? We are also going to look at a library thats been around much longer and is very popular for deep learning - Theano. With this library we will also examine the basic building blocks - variables, expressions, and functions - so that you can build neural networks in Theano with confidence.

Because one of the main advantages of TensorFlow and Theano is the ability to use the GPU to speed up training, I will show you how to set up a GPU-instance on AWS and compare the speed of CPU vs GPU for training a deep neural network.

With all this extra speed, we are going to look at a real dataset - the famous MNIST dataset (images of handwritten digits) and compare against various known benchmarks.

Data Science: Practical Deep Learning in Theano + TensorFlow

Direct Download

Tags: Science, Practical, Learning, Theano, TensorFlow

Add Comments:
Enter Code: *