Download Now

The Topology of Chaos: Alice in Stretch and Squeezeland
Robert Gilmore, Marc Lefranc - The Topology of Chaos: Alice in Stretch and Squeezeland
Published: 2002-06-15 | ISBN: 0471408166 | PDF + DJVU | 518 pages | 13.24 MB

A new approach to understanding nonlinear dynamics and strange attractors
The behavior of a physical system may appear irregular or chaotic even when it is completely deterministic and predictable for short periods of time into the future. How does one model the dynamics of a system operating in a chaotic regime? Older tools such as estimates of the spectrum of Lyapunov exponents and estimates of the spectrum of fractal dimensions do not sufficiently answer this question. In a significant evolution of the field of Nonlinear Dynamics, The Topology of Chaos responds to the fundamental challenge of chaotic systems by introducing a new analysis method-Topological Analysis-which can be used to extract, from chaotic data, the topological signatures that determine the stretching and squeezing mechanisms which act on flows in phase space and are responsible for generating chaotic data. Beginning with an example of a laser that has been operated under conditions in which it behaved chaotically, the authors convey the methodology of Topological Analysis through detailed chapters on:
* Discrete Dynamical Systems: Maps
* Continuous Dynamical Systems: Flows
* Topological Invariants
* Branched Manifolds
* The Topological Analysis Program
* Fold Mechanisms
* Tearing Mechanisms
* Unfoldings
* Symmetry
* Flows in Higher Dimensions
* A Program for Dynamical Systems Theory
Suitable at the present time for analyzing "strange attractors" that can be embedded in three-dimensional spaces, this groundbreaking approach offers researchers and practitioners in the discipline a complete and satisfying resolution to the fundamental questions of chaotic systems.

Buy Premium Account To Get Resumable Support & Max Speed

Links are Interchangeable - No Password
Direct Download

Tags: Topology, Stretch, Squeezeland

Add Comments:
Enter Code: *